March of the Giant Penguins
Posted by: Loren Coleman on June 25th, 2007
March Of The Giant Penguins: Prehistoric Equatorial Penguins Reached 5 Feet In Height
Science Daily — Giant prehistoric penguins? In Peru? It sounds more like something out of Hollywood than science, but a researcher from North Carolina State University along with U.S., Peruvian and Argentine collaborators has shown that two heretofore undiscovered penguin species reached equatorial regions tens of millions of years earlier than expected and during a period when the earth was much warmer than it is now.
Paleontologist Dr. Julia Clarke, assistant professor of marine, earth and atmospheric sciences at NC State with appointments at the North Carolina Museum of Natural Sciences and the American Museum of Natural History, and colleagues studied two newly discovered extinct species of penguins. Peruvian paleontologists discovered the new penguins’ sites in 2005.
The research is published online the week of June 25 in Proceedings of the National Academy of Sciences. It was funded by the National Science Foundation Office of International Science and Engineering and the National Geographic Society.
The first of the new species, Icadyptes salasi, stood 5 feet tall and lived about 36 million years ago. The second new species, Perudyptes devriesi, lived about 42 million years ago, was approximately the same size as a living King Penguin (2 1⁄2 to 3 feet tall) and represents a very early part of penguin evolutionary history. Both of these species lived on the southern coast of Peru.
These new penguin fossils are among the most complete yet recovered and call into question hypotheses about the timing and pattern of penguin evolution and expansion. Previous theories held that penguins probably evolved in high latitudes (Antarctica and New Zealand) and then moved into lower latitudes that are closer to the equator about 10 million years ago — long after significant global cooling that occurred about 34 million years ago.
“We tend to think of penguins as being cold-adapted species,” Clarke says, “even the small penguins in equatorial regions today, but the new fossils date back to one of the warmest periods in the last 65 million years of Earth’s history. The evidence indicates that penguins reached low latitude regions more than 30 million years prior to our previous estimates.”
The new species are the first fossils to indicate a significant and diverse presence of penguins in equatorial areas during a period that predates one of the most important climatic shifts in Earth’s history, the transition from extremely warm temperatures in the Paleocene and Eocene Epochs to the development of “icehouse” Earth conditions and permanent polar icecaps. Not only did penguins reach low latitudes during this warmer interval, but they thrived: more species are known from the new Peruvian localities than inhabit those regions today.
By comparing the pattern of evolutionary relationships with the geographic distribution of other fossil penguins, Clarke and colleagues estimate that the two Peruvian species are the product of two separate dispersal events. The ancestors of Perudyptes appear to have inhabited Antarctica, while those of Icadyptes may have originated near New Zealand.
The new penguin specimens are among the most complete yet discovered that show us what early penguins looked like. Both new species had long narrow pointed beaks — now believed to be an ancestral beak shape for all penguins. Perudyptes devriesi has a slightly longer beak than seen in some living penguins but the giant Icadyptes salasi exhibits a grossly elongated beak with features not known in any extinct or living species. This species’ beak is sharply pointed, almost spear-like in appearance, and its neck is robustly built with strong muscle attachment sites. Icadyptes salasi is among the largest species of penguin yet described.
Although these fossils seem to contradict some of what we think we know about the relationship between penguins and climate, Clarke cautions against assuming that just because prehistoric penguins may not have been cold-adapted, living penguins won’t be negatively affected by climate change.
“These Peruvian species are early branches off the penguin family tree, that are comparatively distant cousins of living penguins,” Clarke says. “In addition, current global warming is occurring on a significantly shorter timescale. The data from these new fossil species cannot be used to argue that warming wouldn’t negatively impact living penguins.”
Source: North Carolina State University
Date: June 25, 2007
====
Drawing at top:
Reconstructions of the first Paleogene penguins from equatorial regions, illustrating morphological diversity and size range in present the new early penguin faunas.The late Eocene giant penguin Icadyptes salasi(right) and the middle Eocene Perudyptes devriesi (left) are shown to scale with the only extant penguin inhabiting Peru, Spheniscushumbolti (center). Icadyptes salasi is the first giant penguin known from a complete skull and had an estimated standing height of 1.5m. Perudyptes devriesi is known from one of the most complete skeletons of a more basal part of the penguin lineage. Together these new finds are revolutionizing our understanding of biogeography and timing of diversification in the penguin lineage. (Credit: Art by Kristin Lamm)
About Loren Coleman
Loren Coleman is one of the world’s leading cryptozoologists, some say “the” leading living cryptozoologist. Certainly, he is acknowledged as the current living American researcher and writer who has most popularized cryptozoology in the late 20th and early 21st centuries.
Starting his fieldwork and investigations in 1960, after traveling and trekking extensively in pursuit of cryptozoological mysteries, Coleman began writing to share his experiences in 1969. An honorary member of Ivan T. Sanderson’s Society for the Investigation of the Unexplained in the 1970s, Coleman has been bestowed with similar honorary memberships of the North Idaho College Cryptozoology Club in 1983, and in subsequent years, that of the British Columbia Scientific Cryptozoology Club, CryptoSafari International, and other international organizations. He was also a Life Member and Benefactor of the International Society of Cryptozoology (now-defunct).
Loren Coleman’s daily blog, as a member of the Cryptomundo Team, served as an ongoing avenue of communication for the ever-growing body of cryptozoo news from 2005 through 2013. He returned as an infrequent contributor beginning Halloween week of 2015.
Coleman is the founder in 2003, and current director of the International Cryptozoology Museum in Portland, Maine.
Just goes to show how science can bring up things that challenge what we think we know about the world. Great article.
Fantastic. Having myself come “eye to eye” with emperors on a few occasions, the prospect of that being literal as well as figurative is intriguing.